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w-HARMONIC FUNCTIONS AND INVERSE CONDUCTIVITY PROBLEMS
ON NETWORKS.

CARLOS A. BERENSTEIN AND SOON-YEONG CHUNG

ABsTRACT. In this paper, we discuss the inverse problem of identifying the connectivity and
the conductivity of the links between adjacent pair of nodes in a network, in terms of an input-
output map. To do this we introduce an elliptic operator A,, and an w-harmonic function on the
graph, with its physical interpretation been the diffusion equation on the graph, which models
an electric network. After deriving the basic properties of w-harmonic functions, we prove the
solvability of (direct) problems such as the Dirichlet and Neumann boundary value problems.
Our main result is the global uniqueness of the inverse conductivity problem for a network under
a suitable monotonicity condition.

Introduction

A network represents a way of interconnecting any pair of users or nodes by means of some
meaningful links. Thus, it is quite natural that its structure can be represented, at least in a
simplified form, by a connected graph whose vertices represent nodes and whose edges represent
their links. When we have some problem on a part of the network or when we are in need of
finding such problem, it is almost impossible to investigate the whole network, since the network
may be too vast and its structure or connectivity too complicated.

From the graph theoretical point of view, problems involving graph identification have been
among the most important and famous open problems in graph theory ( [BH] ). Most of the
work on this subject has concentrated on spectral graph theory, on the realization of graphs with
given distances, and on the reconstruction of graphs from vertex deleted subgraphs ( see [B2],
[C1], [C2], [C3], [COJ, [CL], [CvDGT], [CvDS] and [HY] ). Thus far, spectral theory has been
one of the most significant tools used studying graphs, and it has led to noteworthy progress in
the study along these questions. But, as it is well known, graphs are not in general completely
characterized by their spectra (see [CvDGT], p. 66).

In this paper another method to study the graph identification problem will be introduced, a
discrete version of the inverse conductivity problem.

The inverse conductivity problem original aim was to identify the conductivity coeflicient in
continuous media from boundary measurements, such as Dirichlet data, Neumann data, or their
appropriate combinations.
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2 CARLOS A. BERENSTEIN AND SOON-YEONG CHUNG

The discrete or finite nature of graphs makes working on graphs basically easier than inves-
tigating these problems in the continuous case. On the other hand, their discrete nature of also
gives rise to several disadvantages. For example, solutions of the Laplace equation (introduced in
Section 2) have neither the local uniqueness property nor is their uniqueness guaranteed by the
Cauchy data, contrary to the continuous case, where they are the most important mathematical
tools used to study the inverse conductivity problem and related problems.

The purpose of this paper is to give a discrete analogue of the inverse conductivity problem
studied as studied in a number of publications, such as [A], [Cal, [I], [IP], [KS]and [SU]. To do
this we introduce an elliptic operator on the graph, the w - Laplacian A, and interpret it as
a diffusion equation on the graph modeled by the electric network. Since little has been so far
studied about partial differential equations on graphs, we will establish several useful properties
of A,,, which are essential to solve the inverse problem.

The inverse problem we study is to identify the connectivity of the nodes and the conductivity
of the edges between each adjacent pair of nodes. We begin by proving the following global
uniqueness result for the inverse conductivity problem in a network satisfying the monotonicity
condition:

Theorem. Let wi and ws be weights with w1 < ws on S xS and fi, fo: S — R be functions
salisfying thal for j =1, 2,
A, fy(l') =0, z €S8,

afjit(z) =(2), z €98,

‘/S fj dwj =K

for a given function ¢ : 0S8 — R with fasw = 0 and for a suitably chosen number K > 0.
If we assume that

(1) wl(zzy) = L()Q(Z,y) on 95 X 8OS:
(i) files = f2los

then we have
fi=foon S
and

W] = W 0n§ X ?

The second conclusion wi = wo above is exactly what we want to have. In fact, it shows not
only whether or not, each pair of two nodes is connected by a link, but also how nice the link is.
Both the condition w; < wy above (so called, the monotonicity condition ) and the condition
| glido;, = K (so called the normalization condition) will be shown to be essential by giving
counterexamples. In fact, even in the continuous case, some form of monotonicity has also been

considered ( see [I], [Ca] and [A] ).

We organized this paper as follows: First, we discuss calculus on graphs in Section 1 and in
Section 2 we introduce w-harmonic functions on graphs and some good properties of them, which
are useful later and for further study. In fact, those properties are interesting by themselves in

authors’ opinion.
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In Section 3, we discuss the direct problems such as the Dirichlet BVP and Neumann BVP,
and give a physical interpretation of A,,. Besides, additional useful properties of w-harmonic
functions will be introduced.

In the final Section 4, we prove the global uniqueness result of inverse problem under the
monotonicity condition. Ahead of its proof, we derive an discrete version of the Dirichlet prin-
ciple, which is an essential tool for the proof of the main theorem.

After the authors completed this paper, Professor Gunter Uhlmann informed the authors that
Morrow with his group published a series of papers ( see [MC1], [MC2],]MMC], [MI] and [MIC]|
) on the inverse problem of the networks. But their results were concentrated on the networks
of special types such as circular networks or integer lattices. Moreover, their approaches would
not work for the networks of general type.

1. Calculus on Weighted Graphs

We shall begin with some definitions of graph theoretic notions frequently used throughout
this paper.

By a graph G = G(V,E) we mean a finite set V' of verlices with a set E of two-element
subsets of V' (whose elements are called edges). The set of vertices and edges of a graph G are
some times denoted by V(G) and E(G), or simply V and E, respectively. But conventionally,
we denote either « € V or x € (G the fact that z is a vertex in G.

A graph G is said to be simple if it has neither multiple edge nor loop and G is said to be
connecled if for every pair of vertices x and y there exist a sequence (termed a path) of vertices
T = X0,T1,%2, . Tp_1,Tn = Y such that z; ; and x; are connected by an edge (termed
adjacent) for j = 1,2,--- ,n.

A graph S = S(V', E') is said to be a subgraph of G(V, E) if V! C V and E’ C E. In this case,
we call G a host graph of S. If E' consists of all the edges from E which connect the vertices
in V’, then S is called an induced subgraph. It is easy to see that every induced subgraph of a
connected graph is also connected.

A weighted (undirected) graph is a graph G(V, E) associated with a weight function w :
V x V — [0, ¢) satisfying

(i) w(z,x)=0, =€V,
(11) w(x: y) - w(y: l'), if z ~y,

(iii) w(z,y) =0 if and only if {x,y} ¢ E.

Here, x ~ y means that two vertices x and y are connected (adjacent) by an edge in . In
the case, {z,y} denotes the edge connecting the vertices z, y.

In particular, a weight function w satisfying

is called the standard weight on G. The physical meaning of the weight function will be discussed
later in Section 3.
The degree dx of a vertex x in a weighted graph G(V, F) with a weight w is defined to be

dpr = Z w(z,y).

yev
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Throughout this paper, all the subgraphs are assumed to be induced subgraphs of a host
graph, which is simple and connected, with a weight, and a function on a graph is understood
as a function defined only on the set of vertices.

The integration of a function f : G — R on a graph G = G(V, E) is defined by

/ fd, (or 31mply/f Zf(T
eV

We shall now define the directional derivative of a function f : G — R. For each . and y € V'
we define

Do (@) = [Fy) — fl)y |20

dox

The gradient V,, of function f is defined to be a vector

wa(l') = (Dw,yf(x))yev 5

which is indexed by the vertices y € V. Then it is easy to see that

[Nt @F = 3 |Var@) s

zeV

= > Y fw) - f@Pwlz,y)
eV ycV

=2 > |f o) w(z.y),
{z.y}eE

which is called the energy of f on G.
For a subgraph S of a graph G = G(V, E) the (vertex) boundary 0S of S to be set of all
vertices z € V not in S but adjacent to some vertex in S, i.e.

0S :={z € V]z ~y for some y € S}
and we define the inner boundary 0S5 is defined by

0S:={y € S|y ~ z for some z € S}.
Also, by S we denote a graph whose vertices and edges are in S U 98S.

The (outward) normal derivative i(z) at z € 05 is defined to be

O @)=Yl - fw)]- ”),

an
« YyeS

where d/,z = csw(z.y).
The w-Laplacian A, of a function f : G — R on a graph G is defined to be

Auf(x):==> (Dif)(z), zeV.

yev
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In other words,

(1.1)

Auf@) =S ) — 1) 20 e

d,x
yeV w

For notations, notions and conventions we refer to [C1] and [CvDS].

Remark 1.1. (i) The discrete Laplacian on graphs can be found in several places, such as
1]. But the w-Laplacian defined above is not exactly the same as the one
considered in those references. In fact, the definition used here will give us an advantage

[C1], [CvDS], [B

of a more consistent treatment in Section 2.

(ii)) The first derivatives and gradient in a discrete sense have not been introduced so far
precisely in the literature, as far as the authors know. But the first derivative D,
defined above may still be unsatisfactory in a sense that Leibniz’ rule does not hold. In
spite of this defect, it will be seen later that it has the appropriate physical meaning and

works very well with respect to calculus on graphs.

In what follows, a function f defined on S may be understood as a function on its host graph

G such that f = 0 on G\ S, if necessary.

Theorem 1.2. Let S be a subgraph of a host graph G. Then for any pair of functions
f:S—=Rand h: S — R, we have

(1.2)

2/h(_Aw,f) :!/'S.‘th-vwf.

JS

Proof. A direct use of the definitions mentioned above gives

5 / WoALf) —

S

2 h(@)[-Auf(z)doz

z€S

—2Y wa{ Y 1f) - f@wEy)
zeS yeV(G)

2> > h(@)[f(x) — fy)w(z.y)

€S yesS
S h@)f@) — W) + YD A ) — f@)w(z,y)
zeSyeS €S yeS
S {lFw) - F@Vale )} - {by) — b))V le.y)}
zeSyeS
> AVal (@) Voh(x)}dor
€S

/wa-vwh. m
JS

The above theorem yields many useful formulas such as the Green theorem.

Corollary 1.3. Under the same hypotheses as above we have the following identities:
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2 [ =t = [t
/ShAwf:/Swah.

(i)

(iii) (Green’s formula)

[ao=naon = [ ¢ —ni".

Proof. (i) is trivial and (ii) can be easily obtained by the symmetry in (1.2). We prove (iii). In
view of (ii) we have

0 — /S [FAuh — RALf]
— [ 1rah—hALf+ [ AR hAL
S oS

Then, since S is the induced subgraph, it follows that w(z,y) = 0 for all z and y € 85 and
[lrach—hanf) = [ (o - gau
S as
= > DALF(2) — F(2)Auh(2)]dwz

z€0S
S Y {r@ W - 1@y - FEIRE) - AWy}
z€0S yeS

— gazs a2 - (,)8:;} + f(z)({)a:;(z)]dwz

Oh af
L
a8 Tt W
In the continuous case, the followings are well-known formula :

A(fg) = fAg+2Vf-Vg+gAf

/Vf Vg+/ng— . f%

Here, we introduce a discrete analogue of these formula.

Theorem 1.4. Under the same hypothesis as in Theorem 1.2, we have following identities hold
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(i)
Aw(fh) - wah + Vof - Voh + hAwf
(i)
o(fh)

S &un

/vaf-vwh-l—/;[wah-l—hAwf]:/a

Proof. (i) can be obtained by an elementary manipulation. Using now (i) and Theorem 1.2, (iii)
with & = 1 we obtain (ii). g

2. w - Harmonic Functions

In this section we will discuss the functional properties of functions which satisfy the equation

(2.1 Auf@) =Y [f) - £ “0Y — o
yes “

For a subgraph S with boundary 95 # ¢ of a host graph G with a weight w we say that a
function f : .S — R is w-harmonic on S if it satisfies (2.1) for all x € 5, i.e.

f@)y= - fyw(z.y), z€S.

This implies that the value of f at z is given by a weighted average of the values of f at its
neighboring vertices. From this point of view, we can clearly expect the following result to be
true:

Theorem 2.1 (Minimum and Maximum Principle). Let S be a subgraph of a host graph G with
a weight w and f : S — R be a function.
(i) If Apf(x) > 0,2 € S and f has a maximum at a verter in S, then f is constant.
(ii) If Apf(x) <0,z € S and f has a minimum at a vertex in S, then f is constant.
(iii) If A, f(x) =0,z € S and f has either a minimum. or maximum in S, then f is constant.
(iv) If A, f(z) =0,2 € S and f is constant on the boundary 0S, then f is constant.

Proof. (ii) can be done in a similar way as in (i). (iii) and (iv) are easily obtained from (i) and
(ii).

We prove (i). Assume that f has a maximum at a vertex zg € S. Then

(2:2) @) = f). yeS
and
(2.3) flag) < 3 i) 2

yeSs
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Suppose that there exists yg € S such that zg ~ yg and f(xo) # f(yo), i.e. f(xo) > f(yo) in
view of (2.2). Then it follows from (2.3) that

flzo) < Z f(w(zo,y) n fyo)w(zo, yo)

- - dxo dxo

yeSs

YFY0

f@o)w(zo,y) | flzo)w(o, yo)

< Z dwl‘o + dwl‘o

yeSs

Y#Y0
- f(afo),

which implies that f(zg) = f(y) for all y € S such that y ~ zg. Now for any x € S, there exists
a path

xONxINxQN"'an—lwxn:x:
since S is connected. By the applying the same argument as above inductively we see that

fl@o)=f(x). m
The following is an easy consequence of the above theorem

Corollary 2.2. Under the same hypotheses as in Theorem 2.1, the following statements are
true:

(i) If Auf >0 o0n S and flas <0 (< 0), then f <0 (<0) on S.
(i) If Auf < 0on S and flps >0 (> 0), then f >0 (>0) on S.

Corollary 2.3. (1) If two functions f and g on S satisfy
Au,f=0and A,g>0

on S, then glas < flas implies g < f on S.
(2) If a function f : S — R satisfies

Apf(z)=0, ze8

and | f| has a maximum in S, then f is constant.

In the continuous case, it is well known that a local maximum principle holds for a harmonic
function in an open subset 2 C R™. But it is not hard to see that the local maximum principle
is no longer true in general in our case. Moreover, the local uniqueness principle does not hold
in general. As a matter of fact, it is rather natural to expect that such discrepancies are caused
by the discrete nature of graphs.

A nonempty subset I' of vertices of a subgraph S is said to be a surface in S if I' = 8T for a
subgraph 1" whose vertices belong to S. In this case, we denote by I" the inner boundary &1

For each vertex z € I' and = Ef‘ we define
d,z = Z w(y,z) (inward degree)

G
yel
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and
dx = Z w(z.z) (outward degree).
zell

In addition, for a function f on S we write

/ f(2)d,z = Z f(2)d,z (inward integral)
r

zell

and )
/c flx)dx = Z f(x)dx (outward integral)
Jr -

€l
We use these notions to obtain the following interesting properties of w-harmonic functions.

Theorem 2.4. Let S be a subgraph of a host graph with weight w and let f : S — R. Then f
is w-harmonic on S, t.e., for allx € S,

(2.4) Ay f(z) =0,

if and only if for every surface I' in S
(25) [ sz = [ sy
r

Proof. Let x € S and I'y = {y € S|z ~y}. Then I'; is a surface in S and f‘w: {z}. Since

d,xr = d’x on f‘w and d,z = w(z, z), (2.5) implies

f(x)dpx = Z f(2)w(z, 2),

zEF.T,

which implies (2.4) immediately
Assume now that (2.4) holds and let T be a surface in S such that I' = 9T for a subgraph T' C S.
We use Green’s formula (Corollary 1.3, (ii)) to obtain

Oz/T.Awf
of

T aun

- of .\ »
= Z %(z)dwz
zel

(2.6) = > D @ - f®]wzy).

N <
ze yer

Then it follows that

DY fEwzy) =) Y fy)w(zy)

I < I <
#€ yer #EL yer
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or, equivalently

SIS wn] =D )| Y w).

zel’ yelc“ yelc“ zel’
which yields (2.5). g

In view of (2.6) we obtain the edge version of Theorem 2.4, the so called dual theorem, as
follows :

Corollary 2.5. Under the same conditions as in Theorem 2.4 , the formula (2.5) is equivalent

to
S [f) - f@)]elzy) =0

{zy}eET.D)
where E (T, f‘) denotes the set of all edges joining a vertex in I and a vertex in IO‘

For two vertices z and y in a connected graph, the distance d(x,y) between z and y is the
number of edges in a shortest path joining x and y.
For a vertex xg in a subgraph S we write

which is called a neighborhood of zg with radius j.
Then the following is a variant of Theorem 2.4:

Corollary 2.6. Let S and f be the same as in Theorem 2.4. Then f is w-harmonic on S if
and only if for cvery xg € S

(27) [ tede=[ e
I'j(zo) L1 (z0)
for each j with T'j(xg) C S.

Proof. Letting j = 0in (2.7) we have the sufliciency. To prove the necessity, consider an induced
subgraph T whose vertices are exactly those of | J],_q T'x(z0). Then it is easy to see that

or = Fj+1(ac0) and 5TC I‘j(xo).

But a vertex « in I'j(x), which does not belong to 87", does not make any contribution to the
outer integral fP(wg) f(z)d]x, since d/,z = 0. Hence, condition (2.5) in Theorem 2.4 shows the
J

condition is necessary. g
The following is the dual version of the above corollary:

Corollary 2.7. Under the same conditions as in Corollary 2.6 the formula (2.7) is equivalent

to
Z [f(x) = f(y)]w(z,y) =0
{w,y}eE(rj(xg),rHl(wU))

where E(Lj(z).Tj4 (xo)) denotes the set of all edges joining a verter in I'j(xg) and a vertex
in L'j41(xo0)
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3. The Dirichlet and Neumann Boundary Value Problems. Direct Problems

We start this section with a physical interpretation of the w-Laplace and w-Poisson equations.
Consider a host graph GG with a weight w and an (induced) subgraph S. For a surface I in S
with I' = 9T for some T' C S and z € I, the flux of energy passing through z to its adjacent
nodes in 1" is given by

(3.1) e fw)- e

Y~z

where d'z = > ymzyerw(z,y) and f is a potential function in a diffusion field on a network.
(For example, an electrostatic field, a thermal field, or an elastic membrane.) Here, the weight
w(z,y) plays the role of the conductivity of the diffusion along the edge {z,%}. In fact, (3.1) is
exactly —%(z) on I' by definition (see Section 1) and thus, by Green’s formula we have

of
-a.n- |
|- [ (=55,
which is the flow across I.

On the other hand, assume that 7' gains (or loses) an amount of energy fT g where g is the

energy density. Then we have
Jcamn=[o
T T

Therefore, since 1" is arbitrary, by taking 7T" to be any single vertex x € 5 we obtain the vertex
equation

(3.2) —Auf(z) =g(x), z€S.

Thus, it is reasonable to say that the conductivity equation on a graph can be represented as in
(3.2), where w(x,y) corresponds to the edge conductivity on the edge z,y.

Following the work of Fan Chung and her collaborators [C1], [C2] and [CO|, we will discuss
first the equation (3.2) on a graph G = G(V, F') with a weight w and no boundary. We consider
the matrix

-1, ifz=y
Aulwy) = PP a~y
0, otherwise .

Considering the function f as a |V|-dimensional vector, the equation (3.2) can be understood
as a matrix linear equation. Let D denote the diagonal matrix with (x,x)-th entry having the
value dz for each = and £, = DY2A,D /2. Then (—L,,) is a nonnegative definite symmetric
matrix, so that it has the eigenvalues

A< A <A << Ay
and the corresponding eigenfunctions

(3.3) Qo @1, P2, -+ - P,
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which form an orthonormal basis for RY in the sense that for each pair of distinct ¢ and j

eV

Y le@)ff =1.

eV
Here, N denotes |V|, the number of vertices in G. Then it is easy (see [Cl]) to show that
Ao =0, \; > 0 and ®q(z) = ﬁ% , xeV,and vol(G) ==

In what follows, we occasionally use the notation ( , )x, defined by (f,g)x = >__x f(x)g(x)
for simplicity. Now we have the following solvability result for the Poisson equation:

Theorem 3.1. Let G = G(V, E) be a graph with a weight w and f : G — R be a function. Then
the equation

(3.4) Auf(z)=g(x), z€V

has a solution if and only if ng = 0. In this case, the solution is given by
(35) f(x) :a0+<rw(x:'):g>‘/: reV

where ag s an arbitrary constant and

= 1 d.y
(3.6) Iuawziﬂ—xj%@%@)aﬁ,mmew

while, for all j,

€V dwl‘.

j=1
Proof. Assume that [, g = 0. Then
Vd,x
DY2g, @ = d,xg(x) - s

1 .
v volGG /G g
0

where D is the diagonal matrix whose z-th diagonal entry is d,x.
Consider the orthogonal expansion

VPR <
(D2 1) () Z a;®;(x), zeV
=0

where a; = (D1/2§, ), =0,1,2,--- , N — 1. Then since L,DY2% = DY2A,, and
—Nja; = (DV2f L,®;)
= (LoDY2f @)
(D'/?g,9;),

we have

(= YN\przg ey, - _
a; = ( /\j)<D g, q)j>: J= 1:2: :N 1
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and ag is an arbitrary constant. Hence

Vda |\~
Viaf(@) = ar YT > (- \) [yezvg(y)éy-(y)@} @;(x)

equivalently,
N—1

a 1 Vdy
fla)— +;(—M)ye§;g(w%) Vi i@

:

which gives (3.6).
The proof of the converse is easy. m

The matrix I',, in (3.5) is called the Green function of A,,.
The following corollary is a Liouville type theorem for w-harmonic functions.

Corollary 3.2. Under the same conditions as in Theorem 3.1, every solution f of
Apf(x)=0, zeV

18 constant.

The following corollary describes all functions which are w-harmonic except possibly on a
given (singularity) set 7.

Corollary 3.3. Under the same conditions as in Theorem 3.1, let T' C V. Then cvery solution
to

Apf(x)=0, zeV\T

can be represented as

(3.7) f@y=ao+) Tu(z.y)aly), zeV
yeT

where ag 1is an arbitrary constant and

aly) =Aufly), yel.

In particular, if 7' = {xg}, 7o € V, then (3.7) can be written as
flx)=ao+alw(z,z0), =€V
where ag = A, f(z0)-

Let us now turn to boundary value problems and their eigenvalues. For a subgraph S of a
host graph G with a weight w, the Dirichlet cigenvalues of —L,, = —DY/2A,D~1/? are defined
to be the eigenvalues

v e <<y
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of the matrix —L,, s where £, 5 is a submatrix of £,, with rows and columns restricted to those
indexed by vertices in S and n = |S|. Let ¢1,¢a,-- &, be the functions on S such that for
each j =1,2,--- . n,

Lospi(x) — (=vj)i(x), €S and ¢jlss — 0.

In fact, ¢1, s, - - - , ¢, are the eigenfunctions corresponding to 11 < o < - -+ < v, and form an
orthonormal basis for R™. Then it is easy to verify that the first eigenvalue 11 > 0, (see for
instance, [C1]).

One can follow now the standard procedure to define Green functions ,, s as follows :

||

(3.8) Yos(@y) = (

=1

)o@ )V

S

T,y €S

K]

Vi

Letting Dg stand for the diagonal matrix whose z-th entry is d,x for each x € S and setting
A, s = D;l/ 2[,@: SD;/ 2, one can easily verify that

(3.9) WLLSZXaLS ::Zxaasqhgs =1

and
|S] Ly

(3.10) Aus(@y) =Y (~v;)0:(x)d;(y) dwx’ T,y € 5.
=1 w

where [ denotes the |S|-dimensional identity matrix.

The Dirichlet boundary value problem was solved by F.R.K.Chung in [C2], when the graph
has the standard weight. (For the interested reader, despite some minor errota, the proof given
there is correct.) We prove now the solvability of the Dirichlet boundary value problem for
graphs with arbitrary weights using a different method.

Theorem 3.4. Let S be a subgraph of a host graph with a weight w and o : 0S — R be a given
function. Then the unique solution f to the Dirichlet boundary value problem (DBVP)

{ A,f(x) =0, x€S8,
flas =0

can be represented as

(3.11) f(@) = —{w(z.), Bo)yes. T €S,
where
(312 Ba) = 3 Py e s

z€0S
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Proof. Let f be a solution of DBVP. Then

(3.13) 0 = > Yos@yAufy)

yeS
1 @)

= Y (= ) TEY 6 Vdwnufw)]
=1 J W T yes
151 (x)r _

- 2 (- Vlj) ¢jd(wa)v /S (Ds%y) 'Awf}
s @ L

— Z(j)%_/f.Aw(DSl/2¢j)
=1 oV

[ {037 L~ 03]

(4)

15

Here, we have used Green’s formula from the Corollary 1.3. On the other hand, one can show

that

Ay (D5 2¢5) @) = (~v) (D5 %)) (@), z €8,

since ¢; = 0 on 05 and

|S]

Z«ﬁj(x )¢5 (y) \/ =d(z,y), = yeS

where § denotes the Kronecker delta. From these identities we can conclude that

|S| 1 qu(x 1/2 ‘
pf il A CEE)]
g
- Z\/T |2 70) ]
51
= y%:gf(y [Z%(T i (v) \/>}

= [f(x).
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Hence, from the equality (3.13) and the fact that ¢; = 0 on 05, we have
S|
_ 1, ¢;(x) 0 (p-1/2
@) = Z( Vj)\/dwx! a9 [f 8wn( %)]

F=1

151 1 ¢ (l‘ 0 _1/0
= Y (=L 1) -2 (D525 (2) - 2
j:zl ( \/T[ ezab 0 S‘ J) }
= % 1 qu(x Z o(z) dz[Z{¢J(Z ¢’J(y }w(z Y) }
Jj=1 z€0S yEeS
S| (o .
= > jj)jﬁ%Zm)\/dwy( 3 ekt
=1 “Tyes 2€88 w
= =) us@y)Bsy)
yeS

- *<’}’w23(1', ) BU>S

for each x € S.
The desired uniqueness result now follows easily from Theorem 2.1. g

Remark 3.5. (i) The identity (3.11) can be rewritten as
IS

DIED PR P N P

=1 Vs yeES  2€0S
In fact, B, is a function on S depending only on the value of o on 95 and B, (y) = 0 for

Q
y € S\ 0S. On the other hand, two different boundary conditions o1 and o2 may give
rise to the same solution whenever B,, = B,,.
(ii) (3.11) can be understood as a matrix multiplication by

(3.14) f=—Y.s-BsonS
or, equivalently,
(3.15) Ay sf=—-B,onS
in view of (3.8). The relation(3.15) enables us to identify uniquely the boundary values
from a w-harmonic function f with A,f =0 on S.
Now we characterize the w-harmonic functions with a set of singularities in a subgraph with

nonempty boundary.

Theorem 3.6. Let S be a subgraph of a graph with weight w and T C S. Then every f : S — C
satisfying
Apflx)=0, zeS\T
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can be uniquely represented as
(3.16) f@) =h@)+ ) Yws(zybly), z€S5,
ycTl

where h is a w-harmonic function on S satisfying hlas = flas and B(y) = Auf(y), yeT.

Proof. 'T'he uniqueness is easy, by Theorem 2.1. Now let 5(y) := Ay f(y),y € 1. Then we have

0, z€S\T,
Aof(x) = { B(x), xeT.

Define, for © € S,
@) = qus@y)B).

yeTl
and
h(z) = f(z) = fi(=).
Then h|ps = flas and for each = € S,
15|

1
A®) = M@ - A3 (- ¢’J T
yel =1
|5 y (x
= Af@ -3 T [@(y)\/dwyﬂ(y)}
yel j= 1
= Auf(x) =) 8(x.y)B(y)
yerl
= 0,
which completes the proof. m
Remark 3.7. (i) In particular, if T'= {xg}. xg € S, then (3.16) can be written simply as

f(x) = h(z) + vo,5(x, 20)B(x0),

where B(z¢) = Ay f(z0).
(ii) In fact, in view of (3.16) and Theorem 3.4, the solution to the nonhomogeneous DBVP

{Awf(x) = g(x), z€8,

flas = o

can be represented by

f(x) - _<’Yw,5(x: '):BU>S' + <’Yw,$’(x: '):g>S’-

Now we will discuss the Neumann boundary value problem (NVBP). First, we recall Green’s

formula oy
Auf= oo
/S' JOS awn
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Hence, if there exists a solution to

Ayf=g onS,
9 — 4 on 89,

dun
then by Green’s formula it is necessary that |, g9 = jas .

Theorem 3.8. Let S be a subgraph of a host graph G with a weight w and let f : S — R,
g:S =R, and ) : 8S — R be functions with [ye1p = [¢g. Then the solution to the NBVP

Auf(x) =g(x), z€S8,
L) =p(z), z€dS

don

is given by

f(x) =ag+ {Fw(x, '):Q‘>S - (Fw(x, '):¢>8S’:

where Ty, is the Green function of A, on the graph S as a new host graph of S and ag is an
arbitrary constant.

Proof. We rewrite (NBVP) as

17 {Z V@)~ F@] %2 — (o), wes,

Syes [FW) — F()] 42 = —p(2), z €05,

To solve the system(3.17), consider S as a new host graph with the weight w and with no
boundary. Then S is still a subgraph of S. (In fact, we should note here that if we regard S
as a subgraph of G, then its boundary dS may not be empty.) Then, for each z € S, the
inner degree d.,z is equal to d,z in this new graph S, since the induced subgraph has no edges
between the vertices on 5. Hence the equation (3.17) can be written as

(3.18)

Zyevg [f(y) - f(x)] ”éf;ﬁ’) = g(x), x €S,
ZyGVU [f(y) — f(Z)] wéi’j) =—1(2), z€ S,

where Vj is the set of vertices in S. Hence (3.18) is equivalent to

(3.19) S [fw) 1@ 25 —w@), zes

dox
yeWo
where
_ g(z), €S,
W(z) = { —(x), x € IS.

Therefore, (NBVP) is equivalent to

Auf(x) =U(z), €8,
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Thus, it follows from Theorem 3.1 that
f(l‘) = ap+ <rw(l‘, ) \D>$€V0
= ap+ Z rw(x:y)\p(y)

yeWu

= a0+ Lu(zy)gy) = Y Tul@.2)9(2)

yeS zEDS
= ap+ <rw($, )Q‘>S - {I‘w(x, '):w>33:

where ag is an arbitrary constant. This completes the proof. m

Remark 3.9. The solution to (NBVP) is uniquely determined by the Neumann data 1 on 85 up
to an additive constant. Thus, we get a unique solution if we prescribe the value of f at some
vertex in S or, for example, if we seek the solution f with [ f = (a given constant).

4. Inverse Problems

In the previous section, we have seen that for a function function ¢ : S — R with |, g =0
the Neumann boundary value problem

Apf(x)=0, ze€lS,
2(z)=1p(2), z€0S

has a unique solution up to an additive constant. Therefore, the Dirichlet data f|sg, z € 95 is
well-defined up to an additive constant.

In this section, we will discuss the inverse conductivity problem on the network (graph) S
with nonempty boundary, which consists in recovering the conductivity (connectivity or weight)
w of the graph by using, the so called input-output map, for example by using the Dirichlet data
induced by the Neumann data (Neumann-to-Dirichlet map), with one boundary measurement.

In order to deal with this inverse problem , we need at least to know or be given the boundary
data such as f(z), g)—fn(z) for z € 95 and w near the boundary. So it is natural to assume that

(NBVP) {

floss ;—J;bs and r,u|83 sg are known (given or measured). But even though we are given all
« X

these data on the boundary, we are not be guaranteed, in general, to be able to identify the
conductivity w uniquely. To illustrate this we consider a graph S whose vertices are {1,2, 3}
and 05 = {0, 4} as follows:
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with the weight
w(0,1) =1, w(0,k) =0 (k=2, 3, 4),
and
w3, 4) =1, wk,4)=0 (=0, 1, 2).
Let f: S — R be functions satisfying A, f(k) =0, k= 1,2,3. Assume that

f0) =0, f(1) =1, f(3) =3, f(4) =4, [(2) = (unknown).

Thus, since 58: {1, 3}. the boundary data flgg. aa—fn|33 and w|89 5 . ATe known.
w DX O
In fact,
of
——(0) = f(0)— f(1) = —1,
S0 = F0) = (1) = -1,
of
——(4) = f(4) — = 1.
RORNORNG)
The problem is to determine
w(l, 2) =, w(2:3) =Y w(]?’) =z, and f(2)
From A, f(k) =0, k=1,2,3, we have

fO)+zf(2)+ 3z

= ltztz
o zf() +yf3)
o2 f()+yfR)+f4)
G z+y+1 =3

This system is equivalent to

{x(y— 1) +y(z — 1)+ 22(z +y) =0,

_ x+3
J(2) = =,

(4.1)

This system has infinitely many solutions. For instance, assume z = 0, that is, the two vertices
1 and 3 are not adjacent. Then (4.1) is reduced to

1 1

P
(4.2) PRI

F(2) =2,

It is easy to see that there are infinitely many pairs (z,y) of nonnegative numbers satisfying
the first equation in (4.2), so that f(2) is undetermined as a result.

In view of the above example, in order to determine the weight w uniquely we need some more
information than just f|sg, aa—fn los and w|88 55" To motivate the main theorem we impose in
w X

this example the additional constraints that

(4.3) x>1, y>landz>0
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in (4.1). Then the equation (4.1) yields a unique triple of solution x = 1, y =1, z = 0 and

As a matter of fact, even the inverse conductivity problem of a diffusion equation in a bounded
open subset 2 C R?

(4.4) Pla;u] :==

divla(z)Vu(z)] =0, xe€Q,
Ulpo — 0

has been studied under some additional constraints besides Dirichlet and Neumann data (see
[A], [BF], [Cal, [I], [IP], and [SU] ). In particular, in [A] and [I] it is shown that there is a global

uni;]ueneés resﬁlt ’unde’r the condition that
(i) a; = ay near 0f), and a; < ay in €,
(ii) % = % on O,
(iii) Jou = [ou2 =0,
where Plaj;u;] =0, j=1,2in (4.4).

Now we are in a position to state the first main theorem of this paper.

Theorem 4.1. Let wy and we be weights with w1 < ws on S xS and f1, fo:S — R be functions
satisfying that

L (2)=1(2)., z€0S

{ A?]Ei(x) =0, x€eS5,

for a given function i : 9S — R with fasw =0andj=1, 2.
If we assume that
(1) w1 (Z:y) - wg(z,y) on 0S X 8OS:
(i) filas = f2los
then we have
(i) fi=faon S,
(i) wi(w,y) = wa(r,y) whenever fi(x) # fi(y), or fo(x) # f2(y).

To prove this result we adapt the method of energy functionals, extensively used for nonlinear
partial differential equations. For a function ¢ : 95 — R we define a functional by

o1
(4.5 L) = [ (Vb ~ hg
JS
for every function A in the set
(4.6) A={h:S—>R| hlps=0},

which is called the admissible set. In the continuous case, the well known Dirichlet’s principle
states that the energy minimizer in the admissible set is a solution of the Dirichlet boundary
value problem. We derive here the discrete version of Dirichlet’s principle as follows :
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Theorem 4.2 (Dirichlet’s principle). Assume that f : S — R is a solution to

—A,f=g onb,
4.7
) {f|as = o.
Then
(4'8) Iw[f] = I}}g{‘l Iw[h’]'

Conversely, if f € A satisfies (4.8), then f is the solution Of (4.7), and the only one.
Proof. Let h be a function in A. Then making use of (1.2) in Theorem 1.2 we have

0 = [?(Awfg)(fh)
- /S (AL = k) = g(f = )]
_ /[;wa-vw(f—h)—g(f—h)]
S

= 5 LIVt [ Vur-Vor— [ atr—n.
Hence

/S’[;|vwf|2_gﬂ = /S[;wa'vwh—gh]
< 5SS~ f@)] - ) b)) — [ o

zeSyes S
1 [F() = £(2)]7 + [Aly) — A(2))*
< 22828 . -w(x,w/sgh

1 1/
= /|vwf|2+/|vwh|2— /gh,
4.5’ 4.5’ JS

where we used the triangular inequality

2 62
jab| < Z 7

a,beR.
Thus, it follows that
"1 "1
[9atP o) = [ [[19a - gn).
JS JS

which implies

Since f € A, we have
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Now we prove the converse. Let 1" be a subset of vertices in S and

oo L ower
XT\E) = 0, otherwise.

Then f + 7xr € A for each real number 7, since xy7 = 0 on 85. Define
Z(T) = Iw[f + TXT]: T €R.
Then

i) = [ [{IVof +7¥uxrf = (7 + )]

1
4 LIVrP 2 Vor Voxr + P [ (g

Note that the scalar function i(7) has a minimum at 7 = 0 and thus %(0) = 0. That is,

0 — ;/;vwf-vwa/;m-g
= /S[XT(—Awf—Q)]
= Z [* Awf(x) 7 g(x)] d,x

el
In particular, taking 7" = {z} ,x € S, we obtain
—Ayf(z) — glx) =0,

which is the required result. The uniqueness follows from Theorem 3.4. g

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1.
(i) Let o : 3S — R be the function defined by

o(z) = fi(z) = fa(z), z€ IS,
using the hypothesis (ii). Define
Ll = | /S Vi A2,
for every h in the admissible set
A={h:S—R| hlps=0}.
Then, by virtue of Theorem 1.2 we have

Tall] = 5 [ H-Aond,

1/ 1/
— = / (A, W), + - / h(— Au, h)d,,
2 /s 2 Jas

23
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Moreover, by the coincidence of the Dirichlet and Neumann data we can see that the

boundary 85 and the inner boundary 85 are well-defined independently of the values of
the weights wq, wo and, moreover, for z € 9S

(4.9) Aoz =Y wi(zy) =D w(zy) = duy2,
yG:’;S' yG:’;S'
(4.10) Auh() = Y [Al) - A Y
yE(CaS' “
= Y (Bl ]2
ye(cﬂS w2
= A fal2).

Then, it follows from the condition w; < wo that

Iom[fl] - % 8Sf1(*Aw1fl)dw1
R AT
as
1 1
— 2/3f2(_Aw2f2)dw2+2/88]02(_Aw2f2)d‘02
1
= 2/3,f2(_Aw2.f2)dw2
= 1/|vw2f2|2dw2
= 722 falx) — f2(y] )| “walz, y)

€S yeS

*ZZ [f2(2) = ()] Pwn (2, y)

zeSyeS
1
= 4/S|vw1f2|2dw1

= [f 2]
Using Dirichlet’s principle (Theorem 4.4) one sees that f| = f5 on S.

Y

(ii) In the proof of (i) we actually have proved that I, [f1] = L., [f2]. In other words, taking
fi=hHh=fronS

SN [F@) ) welzy) =30 (@) f@)] el y),

€S yeS zeSyeS
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or, equivalently

Z Z [f(x) - f(yﬂ? : [WQ(x, y) — wl(x,y)} =0.
€S yEeS

Therefore, we have

[f(x) = F)]° - [wa(z,y) —wi(z.y)] =0,
for all z € S and y € S. This gives (ii). @

Remark 4.3. In Theorem 4.1 above, if f := f; = fo is injective on S then we are able to get
wi = wo on S x S. For example, if S is the path P, on n vertices with arbitrary weight w, then
it is not hard to see that every nonconstant w-harmonic function f on P, is strictly monotonic
and hence all the weights are identified. But, in general, most graphs, even with the standard
weight do not admit an injective solution to the DBVP or NBVP. Therefore, it will be quite
interesting to figure out a pair of graphs and weights which admits an injective solution to the
DBVP or NBVP.

To develop an idea to improve Theorem 4.1 we consider a graph S = {1, 2, 3, 4, 5, 6} with
0S = {0, 7} as follows:

Suppose that w; is the standard weight and ws is the weight given by w; = w2 except only
wa(3, 4) =k, k > 1. Then w; < wy throughout the graph S and w; = wo except on the edge
{3,4}. Now define a function f: S — R as

a+b)—(a+p
FO) = f) =a—a, f2)=a-20, f(3) = fl1) = ©TO_@*I)
f(B)=b-28, f(6)=b—p, f(7)=b,
where a, b, a and 3 are arbitrary real numbers. Then it is easy to verify that f satisfies both
the equations

Ay, flx)=0=A,,f(x), zeb.
Here, we note that f is uniquely determined by the boundary data
f0)=a, f(7)=0b

SO =0 -1 =0 2T M- 1) -5

and each value f(z) is determined regardless of the value w2(3,4) = k. This implies that we
cannot identify the weight w2(3, 4) = k even with all possible boundary data a, b, « and 3. To
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derive a key idea to identify wa(3, 4) = k, we take a > 0, b > 0 so that f(0) > 0 and f(7) > 0.
By a direct calculation (or, using Corollary 2.2 ) we see that

flm)>0, m=0,1, 2, ---, 7.
Suppose that f satisfies the relation
(4.11) / fdo, = / fdu, -
S JS

Then, since
/S Fduy = 2£(1) +3(2) +3£(3) + 3£(4) + 37(5) + 2/(6)
and
/S Fduy = 2F(1) +3£(2) + 2+ k) FB3) + 2+ k) F(4) +3£(5) + 2/(6).

it follows that

ELf(3) + f(A)] = f(3) + f(4),
which gives k£ = 1. Therefore, in order to identify the weight over all edges we need to impose
an additional condition such as (4.11).

Now we return to the general situation. We know that for a function ¥ : 9S — R with
Jos® =0and j =1, 2, the equation

Ay hi(z) =0, z €S,

(4.12) 2 (2) =(2), 2 €08,
J
fs hj du; =0
has a unique pair of solution (h1, ha). Let

4.13 ;= min h;(z), j=1,2
(4.13) mj = min h(z), j=1,
and

(4.14) mo = max |m| - vol(S, wy).

where vol(S,w;) = > cqdw, T
Motivated by the above example we refine Theorem 4.1 as follows:

Theorem 4.4. Let wy and ws be weights with w1 < ws on Sx S and f1, fo:S — R be functions
satisfying that for each j =1, 2,
ijfj(x) =0, z €5,
(4.15) L(2) = v(2), 2 €08
F
fs [i do; = K

for a given function ¢ : 35S — R with jasw =0 and a given constant K with K > mq . (Here,
mo is the constant in (4.14)).
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If we assume that

(i) wi(z,y) =wal(z,y) on IS x 808,

(i) filas = folos »
then we have

fi=F
and
wi(z,y) = wa(z, y)

for all z and y in S.
Proof. We have already shown in Theorem 4.1 that f; = fo . Now, for each j = 1, 2, we

choose a constant C; so that C; - vol(S,w;) = K. Then, it follows that C; > |m;| and, hence,
hi(x) + C; > 0, € S by the maximum principle (or, Corollary 2.2). Moreover, the function

h(z) := hj(x) + C; satisfies the equation (4.15). By the uniqueness of the solution we have
fi(x) = h(z) = hj(z) + C; > 0, z € S.
Let [ := f1 = f2 on S. Then it follows from the condition [¢ f1 du, = K = [¢ f2 du, that
> @)y () = 3 f(@)dun ().
TES TES

or, equivalently

N F(@)[dun () — duy ()] =00

TES
Since f(x) > 0 and dy,, (z) > dy, (z) for all x € 5, we have

0 = dy(r)—d,(x)
= ) [walz.y) — walz,y)].
es
Since wy (z,y) < wa(x,y), we obtain
wi(z,y) = wa(z, y)
for all  and y in S, which is the required. g

Remark 4.5. In the above proof, the contributuion of the new condition that |, gJidw; =K >mg
is used only but to guarantee that f;(x) > 0, € S. Hence, if we replace this condition by
flos >0, 7 =1, 2 in Theorem 4.4, we arrive at the same conclusion.

As seen in the study of the inverse conductivity problem in the continuous case (see, for
instance, [A], [Cal, [I], [IP], [SU]) it would be worthwhile to prove the uniqueness under a
condition weaker than the monotonicity condition w; < ws imposed the above. Moreover, it
would also be interesting to consider a stability theorem for the same conductivity equation.
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